3.1.67 \(\int \frac {\cos ^2(c+d x) (A+C \cos ^2(c+d x))}{(a+a \cos (c+d x))^4} \, dx\) [67]

3.1.67.1 Optimal result
3.1.67.2 Mathematica [B] (verified)
3.1.67.3 Rubi [A] (verified)
3.1.67.4 Maple [A] (verified)
3.1.67.5 Fricas [A] (verification not implemented)
3.1.67.6 Sympy [A] (verification not implemented)
3.1.67.7 Maxima [A] (verification not implemented)
3.1.67.8 Giac [A] (verification not implemented)
3.1.67.9 Mupad [B] (verification not implemented)

3.1.67.1 Optimal result

Integrand size = 33, antiderivative size = 152 \[ \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^4} \, dx=\frac {C x}{a^4}-\frac {(8 A-55 C) \sin (c+d x)}{105 a^4 d (1+\cos (c+d x))^2}+\frac {(16 A-215 C) \sin (c+d x)}{105 a^4 d (1+\cos (c+d x))}-\frac {(A+C) \cos ^3(c+d x) \sin (c+d x)}{7 d (a+a \cos (c+d x))^4}+\frac {2 (2 A-5 C) \cos ^2(c+d x) \sin (c+d x)}{35 a d (a+a \cos (c+d x))^3} \]

output
C*x/a^4-1/105*(8*A-55*C)*sin(d*x+c)/a^4/d/(1+cos(d*x+c))^2+1/105*(16*A-215 
*C)*sin(d*x+c)/a^4/d/(1+cos(d*x+c))-1/7*(A+C)*cos(d*x+c)^3*sin(d*x+c)/d/(a 
+a*cos(d*x+c))^4+2/35*(2*A-5*C)*cos(d*x+c)^2*sin(d*x+c)/a/d/(a+a*cos(d*x+c 
))^3
 
3.1.67.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(315\) vs. \(2(152)=304\).

Time = 4.81 (sec) , antiderivative size = 315, normalized size of antiderivative = 2.07 \[ \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^4} \, dx=\frac {\sec \left (\frac {c}{2}\right ) \sec ^7\left (\frac {1}{2} (c+d x)\right ) \left (3675 C d x \cos \left (\frac {d x}{2}\right )+3675 C d x \cos \left (c+\frac {d x}{2}\right )+2205 C d x \cos \left (c+\frac {3 d x}{2}\right )+2205 C d x \cos \left (2 c+\frac {3 d x}{2}\right )+735 C d x \cos \left (2 c+\frac {5 d x}{2}\right )+735 C d x \cos \left (3 c+\frac {5 d x}{2}\right )+105 C d x \cos \left (3 c+\frac {7 d x}{2}\right )+105 C d x \cos \left (4 c+\frac {7 d x}{2}\right )+560 A \sin \left (\frac {d x}{2}\right )-9940 C \sin \left (\frac {d x}{2}\right )-350 A \sin \left (c+\frac {d x}{2}\right )+8260 C \sin \left (c+\frac {d x}{2}\right )+336 A \sin \left (c+\frac {3 d x}{2}\right )-7140 C \sin \left (c+\frac {3 d x}{2}\right )-210 A \sin \left (2 c+\frac {3 d x}{2}\right )+3780 C \sin \left (2 c+\frac {3 d x}{2}\right )+182 A \sin \left (2 c+\frac {5 d x}{2}\right )-2800 C \sin \left (2 c+\frac {5 d x}{2}\right )+840 C \sin \left (3 c+\frac {5 d x}{2}\right )+26 A \sin \left (3 c+\frac {7 d x}{2}\right )-520 C \sin \left (3 c+\frac {7 d x}{2}\right )\right )}{13440 a^4 d} \]

input
Integrate[(Cos[c + d*x]^2*(A + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x])^4,x 
]
 
output
(Sec[c/2]*Sec[(c + d*x)/2]^7*(3675*C*d*x*Cos[(d*x)/2] + 3675*C*d*x*Cos[c + 
 (d*x)/2] + 2205*C*d*x*Cos[c + (3*d*x)/2] + 2205*C*d*x*Cos[2*c + (3*d*x)/2 
] + 735*C*d*x*Cos[2*c + (5*d*x)/2] + 735*C*d*x*Cos[3*c + (5*d*x)/2] + 105* 
C*d*x*Cos[3*c + (7*d*x)/2] + 105*C*d*x*Cos[4*c + (7*d*x)/2] + 560*A*Sin[(d 
*x)/2] - 9940*C*Sin[(d*x)/2] - 350*A*Sin[c + (d*x)/2] + 8260*C*Sin[c + (d* 
x)/2] + 336*A*Sin[c + (3*d*x)/2] - 7140*C*Sin[c + (3*d*x)/2] - 210*A*Sin[2 
*c + (3*d*x)/2] + 3780*C*Sin[2*c + (3*d*x)/2] + 182*A*Sin[2*c + (5*d*x)/2] 
 - 2800*C*Sin[2*c + (5*d*x)/2] + 840*C*Sin[3*c + (5*d*x)/2] + 26*A*Sin[3*c 
 + (7*d*x)/2] - 520*C*Sin[3*c + (7*d*x)/2]))/(13440*a^4*d)
 
3.1.67.3 Rubi [A] (verified)

Time = 1.11 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.12, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.394, Rules used = {3042, 3521, 3042, 3456, 3042, 3447, 3042, 3498, 25, 3042, 3214, 3042, 3127}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a \cos (c+d x)+a)^4} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^2 \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^4}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \frac {\int \frac {\cos ^2(c+d x) (a (4 A-3 C)+7 a C \cos (c+d x))}{(\cos (c+d x) a+a)^3}dx}{7 a^2}-\frac {(A+C) \sin (c+d x) \cos ^3(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^2 \left (a (4 A-3 C)+7 a C \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3}dx}{7 a^2}-\frac {(A+C) \sin (c+d x) \cos ^3(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3456

\(\displaystyle \frac {\frac {\int \frac {\cos (c+d x) \left (4 (2 A-5 C) a^2+35 C \cos (c+d x) a^2\right )}{(\cos (c+d x) a+a)^2}dx}{5 a^2}+\frac {2 a (2 A-5 C) \sin (c+d x) \cos ^2(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {(A+C) \sin (c+d x) \cos ^3(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right ) \left (4 (2 A-5 C) a^2+35 C \sin \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{5 a^2}+\frac {2 a (2 A-5 C) \sin (c+d x) \cos ^2(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {(A+C) \sin (c+d x) \cos ^3(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {\frac {\int \frac {35 C \cos ^2(c+d x) a^2+4 (2 A-5 C) \cos (c+d x) a^2}{(\cos (c+d x) a+a)^2}dx}{5 a^2}+\frac {2 a (2 A-5 C) \sin (c+d x) \cos ^2(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {(A+C) \sin (c+d x) \cos ^3(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {35 C \sin \left (c+d x+\frac {\pi }{2}\right )^2 a^2+4 (2 A-5 C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^2}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{5 a^2}+\frac {2 a (2 A-5 C) \sin (c+d x) \cos ^2(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {(A+C) \sin (c+d x) \cos ^3(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3498

\(\displaystyle \frac {\frac {-\frac {\int -\frac {2 (8 A-55 C) a^3+105 C \cos (c+d x) a^3}{\cos (c+d x) a+a}dx}{3 a^2}-\frac {(8 A-55 C) \sin (c+d x)}{3 d (\cos (c+d x)+1)^2}}{5 a^2}+\frac {2 a (2 A-5 C) \sin (c+d x) \cos ^2(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {(A+C) \sin (c+d x) \cos ^3(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {\int \frac {2 (8 A-55 C) a^3+105 C \cos (c+d x) a^3}{\cos (c+d x) a+a}dx}{3 a^2}-\frac {(8 A-55 C) \sin (c+d x)}{3 d (\cos (c+d x)+1)^2}}{5 a^2}+\frac {2 a (2 A-5 C) \sin (c+d x) \cos ^2(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {(A+C) \sin (c+d x) \cos ^3(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\int \frac {2 (8 A-55 C) a^3+105 C \sin \left (c+d x+\frac {\pi }{2}\right ) a^3}{\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{3 a^2}-\frac {(8 A-55 C) \sin (c+d x)}{3 d (\cos (c+d x)+1)^2}}{5 a^2}+\frac {2 a (2 A-5 C) \sin (c+d x) \cos ^2(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {(A+C) \sin (c+d x) \cos ^3(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3214

\(\displaystyle \frac {\frac {\frac {a^3 (16 A-215 C) \int \frac {1}{\cos (c+d x) a+a}dx+105 a^2 C x}{3 a^2}-\frac {(8 A-55 C) \sin (c+d x)}{3 d (\cos (c+d x)+1)^2}}{5 a^2}+\frac {2 a (2 A-5 C) \sin (c+d x) \cos ^2(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {(A+C) \sin (c+d x) \cos ^3(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {a^3 (16 A-215 C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+105 a^2 C x}{3 a^2}-\frac {(8 A-55 C) \sin (c+d x)}{3 d (\cos (c+d x)+1)^2}}{5 a^2}+\frac {2 a (2 A-5 C) \sin (c+d x) \cos ^2(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {(A+C) \sin (c+d x) \cos ^3(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3127

\(\displaystyle \frac {\frac {\frac {\frac {a^3 (16 A-215 C) \sin (c+d x)}{d (a \cos (c+d x)+a)}+105 a^2 C x}{3 a^2}-\frac {(8 A-55 C) \sin (c+d x)}{3 d (\cos (c+d x)+1)^2}}{5 a^2}+\frac {2 a (2 A-5 C) \sin (c+d x) \cos ^2(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {(A+C) \sin (c+d x) \cos ^3(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

input
Int[(Cos[c + d*x]^2*(A + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x])^4,x]
 
output
-1/7*((A + C)*Cos[c + d*x]^3*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^4) + (( 
2*a*(2*A - 5*C)*Cos[c + d*x]^2*Sin[c + d*x])/(5*d*(a + a*Cos[c + d*x])^3) 
+ (-1/3*((8*A - 55*C)*Sin[c + d*x])/(d*(1 + Cos[c + d*x])^2) + (105*a^2*C* 
x + (a^3*(16*A - 215*C)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])))/(3*a^2))/( 
5*a^2))/(7*a^2)
 

3.1.67.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3127
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-Cos[c + 
 d*x]/(d*(b + a*Sin[c + d*x])), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b 
^2, 0]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3456
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + 
 b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] & 
& NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (In 
tegerQ[2*n] || EqQ[c, 0])
 

rule 3498
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b - a* 
B + b*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + Simp[1 
/(a^2*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*A*(m + 1) + m*(b 
*B - a*C) + b*C*(2*m + 1)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
 B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 
3.1.67.4 Maple [A] (verified)

Time = 1.66 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.57

method result size
parallelrisch \(\frac {15 \left (A +C \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+21 \left (-A -5 C \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+35 \left (-A +11 C \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+105 \left (A -15 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+840 d x C}{840 a^{4} d}\) \(87\)
derivativedivides \(\frac {\frac {\left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{7}+\frac {\left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) C}{7}-\frac {A \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}-\left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) C -\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{3}+\frac {11 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) C}{3}+A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-15 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) C +16 C \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d \,a^{4}}\) \(130\)
default \(\frac {\frac {\left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{7}+\frac {\left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) C}{7}-\frac {A \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}-\left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) C -\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{3}+\frac {11 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) C}{3}+A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-15 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) C +16 C \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d \,a^{4}}\) \(130\)
risch \(\frac {C x}{a^{4}}-\frac {2 i \left (420 C \,{\mathrm e}^{6 i \left (d x +c \right )}-105 A \,{\mathrm e}^{5 i \left (d x +c \right )}+1890 C \,{\mathrm e}^{5 i \left (d x +c \right )}-175 A \,{\mathrm e}^{4 i \left (d x +c \right )}+4130 C \,{\mathrm e}^{4 i \left (d x +c \right )}-280 A \,{\mathrm e}^{3 i \left (d x +c \right )}+4970 C \,{\mathrm e}^{3 i \left (d x +c \right )}-168 A \,{\mathrm e}^{2 i \left (d x +c \right )}+3570 C \,{\mathrm e}^{2 i \left (d x +c \right )}-91 A \,{\mathrm e}^{i \left (d x +c \right )}+1400 C \,{\mathrm e}^{i \left (d x +c \right )}-13 A +260 C \right )}{105 d \,a^{4} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{7}}\) \(169\)
norman \(\frac {\frac {C x}{a}+\frac {C x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {4 C x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {6 C x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {4 C x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {\left (A -15 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a d}+\frac {\left (A +C \right ) \left (\tan ^{15}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{56 a d}+\frac {\left (11 A -169 C \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 a d}+\frac {\left (13 A -15 C \right ) \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{280 a d}-\frac {\left (29 A -55 C \right ) \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{840 a d}+\frac {\left (47 A -1465 C \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{280 a d}+\frac {\left (67 A -1145 C \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{120 a d}-\frac {\left (101 A +605 C \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{840 a d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4} a^{3}}\) \(298\)

input
int(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(a+cos(d*x+c)*a)^4,x,method=_RETURNVER 
BOSE)
 
output
1/840*(15*(A+C)*tan(1/2*d*x+1/2*c)^7+21*(-A-5*C)*tan(1/2*d*x+1/2*c)^5+35*( 
-A+11*C)*tan(1/2*d*x+1/2*c)^3+105*(A-15*C)*tan(1/2*d*x+1/2*c)+840*d*x*C)/a 
^4/d
 
3.1.67.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.18 \[ \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^4} \, dx=\frac {105 \, C d x \cos \left (d x + c\right )^{4} + 420 \, C d x \cos \left (d x + c\right )^{3} + 630 \, C d x \cos \left (d x + c\right )^{2} + 420 \, C d x \cos \left (d x + c\right ) + 105 \, C d x + {\left (13 \, {\left (A - 20 \, C\right )} \cos \left (d x + c\right )^{3} + 4 \, {\left (13 \, A - 155 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (32 \, A - 535 \, C\right )} \cos \left (d x + c\right ) + 8 \, A - 160 \, C\right )} \sin \left (d x + c\right )}{105 \, {\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \]

input
integrate(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^4,x, algorithm= 
"fricas")
 
output
1/105*(105*C*d*x*cos(d*x + c)^4 + 420*C*d*x*cos(d*x + c)^3 + 630*C*d*x*cos 
(d*x + c)^2 + 420*C*d*x*cos(d*x + c) + 105*C*d*x + (13*(A - 20*C)*cos(d*x 
+ c)^3 + 4*(13*A - 155*C)*cos(d*x + c)^2 + (32*A - 535*C)*cos(d*x + c) + 8 
*A - 160*C)*sin(d*x + c))/(a^4*d*cos(d*x + c)^4 + 4*a^4*d*cos(d*x + c)^3 + 
 6*a^4*d*cos(d*x + c)^2 + 4*a^4*d*cos(d*x + c) + a^4*d)
 
3.1.67.6 Sympy [A] (verification not implemented)

Time = 2.88 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.26 \[ \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^4} \, dx=\begin {cases} \frac {A \tan ^{7}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{56 a^{4} d} - \frac {A \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{40 a^{4} d} - \frac {A \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{24 a^{4} d} + \frac {A \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{8 a^{4} d} + \frac {C x}{a^{4}} + \frac {C \tan ^{7}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{56 a^{4} d} - \frac {C \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{8 a^{4} d} + \frac {11 C \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{24 a^{4} d} - \frac {15 C \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{8 a^{4} d} & \text {for}\: d \neq 0 \\\frac {x \left (A + C \cos ^{2}{\left (c \right )}\right ) \cos ^{2}{\left (c \right )}}{\left (a \cos {\left (c \right )} + a\right )^{4}} & \text {otherwise} \end {cases} \]

input
integrate(cos(d*x+c)**2*(A+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**4,x)
 
output
Piecewise((A*tan(c/2 + d*x/2)**7/(56*a**4*d) - A*tan(c/2 + d*x/2)**5/(40*a 
**4*d) - A*tan(c/2 + d*x/2)**3/(24*a**4*d) + A*tan(c/2 + d*x/2)/(8*a**4*d) 
 + C*x/a**4 + C*tan(c/2 + d*x/2)**7/(56*a**4*d) - C*tan(c/2 + d*x/2)**5/(8 
*a**4*d) + 11*C*tan(c/2 + d*x/2)**3/(24*a**4*d) - 15*C*tan(c/2 + d*x/2)/(8 
*a**4*d), Ne(d, 0)), (x*(A + C*cos(c)**2)*cos(c)**2/(a*cos(c) + a)**4, Tru 
e))
 
3.1.67.7 Maxima [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.32 \[ \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^4} \, dx=-\frac {5 \, C {\left (\frac {\frac {315 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {77 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {3 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}}{a^{4}} - \frac {336 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{4}}\right )} - \frac {A {\left (\frac {105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {35 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {15 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}}{a^{4}}}{840 \, d} \]

input
integrate(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^4,x, algorithm= 
"maxima")
 
output
-1/840*(5*C*((315*sin(d*x + c)/(cos(d*x + c) + 1) - 77*sin(d*x + c)^3/(cos 
(d*x + c) + 1)^3 + 21*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 3*sin(d*x + c) 
^7/(cos(d*x + c) + 1)^7)/a^4 - 336*arctan(sin(d*x + c)/(cos(d*x + c) + 1)) 
/a^4) - A*(105*sin(d*x + c)/(cos(d*x + c) + 1) - 35*sin(d*x + c)^3/(cos(d* 
x + c) + 1)^3 - 21*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 + 15*sin(d*x + c)^7 
/(cos(d*x + c) + 1)^7)/a^4)/d
 
3.1.67.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.01 \[ \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^4} \, dx=\frac {\frac {840 \, {\left (d x + c\right )} C}{a^{4}} + \frac {15 \, A a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 15 \, C a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 21 \, A a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 105 \, C a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 35 \, A a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 385 \, C a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 105 \, A a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1575 \, C a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{28}}}{840 \, d} \]

input
integrate(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^4,x, algorithm= 
"giac")
 
output
1/840*(840*(d*x + c)*C/a^4 + (15*A*a^24*tan(1/2*d*x + 1/2*c)^7 + 15*C*a^24 
*tan(1/2*d*x + 1/2*c)^7 - 21*A*a^24*tan(1/2*d*x + 1/2*c)^5 - 105*C*a^24*ta 
n(1/2*d*x + 1/2*c)^5 - 35*A*a^24*tan(1/2*d*x + 1/2*c)^3 + 385*C*a^24*tan(1 
/2*d*x + 1/2*c)^3 + 105*A*a^24*tan(1/2*d*x + 1/2*c) - 1575*C*a^24*tan(1/2* 
d*x + 1/2*c))/a^28)/d
 
3.1.67.9 Mupad [B] (verification not implemented)

Time = 1.13 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.07 \[ \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^4} \, dx=\frac {C\,x}{a^4}+\frac {\left (\frac {13\,A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{105}-\frac {52\,C\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{21}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+\left (\frac {13\,A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{210}+\frac {16\,C\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{21}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+\left (-\frac {11\,A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{140}-\frac {5\,C\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{28}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+\frac {A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{56}+\frac {C\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{56}}{a^4\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7} \]

input
int((cos(c + d*x)^2*(A + C*cos(c + d*x)^2))/(a + a*cos(c + d*x))^4,x)
 
output
(C*x)/a^4 + ((A*sin(c/2 + (d*x)/2))/56 + (C*sin(c/2 + (d*x)/2))/56 - cos(c 
/2 + (d*x)/2)^2*((11*A*sin(c/2 + (d*x)/2))/140 + (5*C*sin(c/2 + (d*x)/2))/ 
28) + cos(c/2 + (d*x)/2)^6*((13*A*sin(c/2 + (d*x)/2))/105 - (52*C*sin(c/2 
+ (d*x)/2))/21) + cos(c/2 + (d*x)/2)^4*((13*A*sin(c/2 + (d*x)/2))/210 + (1 
6*C*sin(c/2 + (d*x)/2))/21))/(a^4*d*cos(c/2 + (d*x)/2)^7)